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Using the thermodynamic Bethe ansatz equations we study the quantum phase diagram, thermo-
dynamics and criticality of one-dimensional spin-1 bosons with strongly repulsive density-density
and antiferromagnetic spin-exchange interactions. We analytically derive a high precision equation
of state from which the Tomonaga-Luttinger liquid physics and quantum critical behavior of the
system are computed. We obtain explicit forms for the scaling functions near the critical points
yielding the dynamical exponent z = 2 and correlation length exponent ν = 1/2 for the quantum
phase transitions driven by either the chemical potential or the magnetic field. Consequently, we
further demonstrate that quantum criticality of the system can be mapped out from the finite tem-
perature density and magnetization profiles of the 1D trapped gas. Our results provide the physical
origin of quantum criticality in a 1D many-body system beyond the Tomonaga-Luttinger liquid
description.

PACS numbers: 03.75.Ss, 03.75.Hh, 02.30.Ik, 34.10.+x

I. INTRODUCTION

The study of spinor Bose gases is an active area of
research in the field of cold atoms [1, 2]. In an opti-
cal trap, the laser-atom interaction is determined by the
induced electric dipole moment, thus the atoms are con-
fined independently of their spin orientations. This has
provided exciting opportunities of simulating quantum
dynamics of spinor Bose-Einstein condensates in which
the “vector” property of spinor atoms can be preserved.
Several experimental groups have successfully demon-
strated spinor BECs of 23Na [3, 4] and 87Rb [5–7] atoms
in optical traps. In particular, the exquisite tunability
with ultracold atoms confined to low dimensions has pro-
vided unprecedented opportunities for testing the the-
ory of one-dimensional (1D) exactly solvable many-body
systems [8–17]. These experimental developments have
stimulated an extensive study of related exactly solvable
models with δ-function interactions, see recent reviews
[18, 19]

Quantum spinor gases with multi-spin states exhibit
richer quantum effects than their single component coun-
terparts. Spinor Bose gases with spin-independent short
range interaction have a ferromagnetic ground state, i.e.
the ground state is always fully polarized [20, 21]. In
contrast to the two-component Fermi gases [22], the two-
component spinor Bose gas with spin-independent s-wave
scattering [23–25] has a ferromagnetic ground state as
long as the interaction is fully spin independent. How-
ever, 1D spinor Bose gas with short-range density-density
and spin-exchange interactions [26, 27] can display a dif-
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FIG. 1: (Color online) Phase diagram in the µ-H plane show-
ing the spin-singlet phase S of paired bosons, ferromagnetic
phase F of spin-aligned bosons, and a mixed phase M of pairs
and unpaired bosons. V stands for the vacuum. The S −M
and F−M boundaries are determined by the critical fields (8)
and (10), respectively. The V − S and V − F boundaries are
given in (6). The dashed-dotted lines are the extrapolation
of the phase boundaries (11) and (12) in the strong coupling
regime.

ferent ground state, i.e., either a ferromagnetic or an
antiferromagnetic ground state solely depending on the
spin-exchange interaction. In this context, the spin-1
spinor Bose gas with short-range delta-function interac-
tion and antiferromagnetic spin-spin interaction is partic-
ularly interesting due to the existence of various phases of
quantum liquids associated with the Bethe Ansatz (BA)

http://arxiv.org/abs/1201.6456v2
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solutions [26, 28–30]. At zero temperature, this model
exhibits three phases in the chemical potential – mag-
netic field plane. These are (i) a spin-singlet phase of
pairs of bosons with hyperfine states |F = 1,mF = ±1〉
or two |F = 1,mF = 0〉 bosons, (ii) a ferromagnetic
phase of fully-polarized atoms in the hyperfine state
|F = 1,mF = 1〉 and (iii) a mixed phase of spin-singlet
pairs and unpaired single atoms, see Figure 1.

Spinor Bose gases exhibit various phases of strongly
correlated quantum liquids and are thus particularly
valuable to investigate quantum magnetism and critical-
ity. Near a quantum critical point, the many-body sys-
tem is expected to show universal scaling behaviour in the
thermodynamic quantities due to the collective nature of
many-body effects. Thus a universal and scale-invariant
description of the system is expected through the power-
law scaling of thermodynamic properties [31, 32]. Most
recently, quantum criticality and universal scaling be-
haviour have been experimentally investigated in low-
dimensional cold atomic matter [33, 34]. These advances
build on theoretical schemes for mapping out quantum
criticality in cold atom systems [35–37]. In this frame-
work, exactly solvable models of cold atoms, exhibiting
quantum phase transitions, provide a rigorous way to
treat quantum criticality in archetypical quantum many-
body systems, such as the Gaudin-Yang Fermi gas [38],
the Lieb-Liniger Bose gas [39] and a mixture of bosons
and fermions [40].

Despite much work on the 1D spin-1 bosons with
strongly repulsive density-density and antiferromagnetic
spin-exchange interactions [26, 28, 29], there has been no
study of the quantum criticality of the model by using
the exact solution. Contrary to the impression one might
have, exact solvability does not guarantee that physical
quantities of interest can be actually calculated by the
BA solutions. The thermodynamic Bethe ansatz (TBA)
equations for this model [29] involve an infinite number of
coupled nonlinear integral equations that impose a num-
ber of challenges to access the physics of the model.

In the present paper, building on the method proposed
in the study of quantum criticality of the Gaudin-Yang
Fermi gas [38] and the Lieb-Liniger Bose gas [39], we
analytically study the quantum phase diagram, univer-
sal thermodynamics and criticality of spin-1 bosons with
strongly repulsive density-density and antiferromagnetic
spin-exchange interactions. We derive a high precision
equation of state of the system in experimental accessi-
ble conditions, i.e., in the strong coupling regime and low
temperatures. We also analytically derive the Tomonaga-
Luttinger liquid (TLL) thermodynamics, quantum crit-
ical exponents and universal scaling functions near the
critical points associated with quantum phase transi-
tions driven by the chemical potential and magnetic field.
These scaling forms for the thermodynamic properties
across the phase boundaries illustrate the physical origin
of quantum criticality in this system, where the singular
part of the thermodynamic properties involves a sudden
change of density of state for either pairs or unpaired

single atoms.
The paper is organized as follows. In Sec II, we present

the model and its corresponding TBA equations. In Sec
III, we analytically determine the phase diagram of the
model at zero temperature. In Sec IV, we derive the
equation of state and universal TLL thermodynamics in
the physical regime, i.e., for strong coupling and low tem-
peratures. In Sec V, we investigate quantum critical be-
haviour driven by the chemical potential and magnetic
field. The scaling functions near the critical points are
obtained analytically. Sec VI is the conclusion.

II. THE MODEL

We consider N particles of mass m confined in 1D
to a length L with δ-interacting type density-density
and spin-exchange interactions between two atoms. The
Hamiltonian is given by [1, 26]

H = −
N
∑

i=1

∂2

∂x2
i

+
∑

i<j

[c0 + c2Si · Sj ]δ(xi − xj) + Ez, (1)

where Si is the spin-1 operator with z-component (s =
1, 0,−1). The interaction parameters c0 = (g0 + 2g2)/3
and c2 = (g2 − g0)/3 where gS = 4π~2aS/m. Here m is
the particle mass and aS represents the s-wave scattering
length in the total spin S = 0, 2 channels. Ez = −HSz

stands for the Zeeman energy, where H is the external
field and Sz the total spin in the z-component. In the
above equation, we have set ~ = 2m = 1.
Using the BA hypothesis, Cao et al. [26] solved the

model (1) with antiferromagnetic spin-exchange interac-
tion for c = c0 = c2 > 0. The energy eigenspectrum is
given in terms of the quasi-momenta {kj} of the parti-

cles through E =
∑N

j=1 k
2
j , obeying the following set of

coupled BA equations [26]

exp(ikjL) =

N
∏

ℓ=1

kj − kℓ + 4c′i

kj − kℓ − 4c′i

M
∏

α=1

kj − Λα − 2c′i

kj − Λα + 2c′i
,

N
∏

ℓ=1

Λα − kℓ + 2c′i

Λα − kℓ − 2c′i
= −

M
∏

β=1

Λα − Λβ + 2c′i

Λα − Λβ − 2c′i
. (2)

Here c′ = c/4, j = 1, ..., N , α = 1, ...,M and {Λα} are
the rapidities for the internal spin degrees of freedom.
The quantum number M is a conserved quantity obeying
the relation M = N − Sz. In this model, the antiferro-
magnetic interaction leads to an effective attraction in
the spin-singlet channel so that the singlet bosonic pairs
comprise a spin singlet ground state. In the thermody-
namic limit N,L → ∞, the sets of solutions {kj} and
{Λα} of the BA equations (2) take a certain form, where
the kj ’s and Λα’s can form complex pairs kj = λj ± ic′

and Λj = λj ± ic′ where λj is real. Notice that each
pair of kj ’s share the same real part as a corresponding
pair of Λj’s. The bound states are associated with a pair
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of |F = 1,mF = ±1〉 bosons or two |F = 1,mF = 0〉
bosons. In addition to that, we also have real kj ’s and Λ
strings of the form Λn,j

α = Λn
α+i(n+1−2j)c′, j = 1, . . . , n

describing spin wave bound states.
At finite temperatures, the physical states become de-

generate. The equilibrium state can be obtained by
the condition of minimizing the Gibbs free energy G =
E+Ez−µN−TS, where µ is the chemical potential and
S the entropy, see Yang and Yang’s grand canonical de-
scription [41] of the BA equations for the integrable Bose
gas. The Zeeman energy EZ = −HSz and entropy S are
given in terms of the densities of charge bound states and
spin-strings described above which are subject to the BA
equations (2). Minimizing the Gibbs free energy leads
to a set of coupled non-linear integral equations, i.e., the
TBA equations (see [29] for details)

ε1(k) = k2 − µ−H − Ta4 ∗ ln(1 + e−
ε1(k)

T )

+T [a1 − a5] ∗ ln(1 + e−
ε2(k)

T )

−T

∞
∑

n=1

[an−1 + an+1] ∗ ln(1 + e−
φn(k)

T ),

ε2(k) = 2(k2 − c′2 − µ) + T [a1 − a5] ∗ ln(1 + e−
ε1(k)

T )

+T [a2 − a4 − a6] ∗ ln(1 + e−
ε2(k)

T ),

φn(k) = n+ T [an−1 + an+1] ∗ ln(1 + e−
ε1(k)

T )

+T

∞
∑

n=1

Tmn ∗ ln(1 + e−
φn(k)

T ). (3)

Here n = 1, 2, . . . ,∞ and the symbol ∗ denotes the con-
volution (f ∗ g(x)) =

∫∞
−∞ f(x − x′)g(x′)dx′, the func-

tions an = 1
π

n|c′|
(nc′)2+x2 and Tnm are given in [29]. These

TBA equations are expressed in terms of the dressed en-
ergies ε1(k), ε2(k) and φn(k) for unpaired states, paired
states and spin strings, respectively. They depend on
the chemical potential µ, the external field H and spin
fluctuations which are ferromagnetically coupled to the
unpaired Fermi sea.
The pressure per unit length of the system is given by

p = p1 + p2 with

p1 =
T

2π

∫ ∞

−∞
ln(1 + e−ε1(k)/T )dk,

p2 =
T

π

∫ ∞

−∞
ln(1 + e−ε2(k)/T )dk, (4)

corresponding to the pressures for unpaired bosons and
spin-singlet pairs, respectively.

III. PHASE DIAGRAM IN THE µ−H PLANE

The ground state properties and phase diagram at zero
temperature can be determined by the dressed energy
equations

ε1(k) = k2 − µ−H + a4 ∗ ε1(k) + [a5 − a1] ∗ ε2(k),
ε2(k) = 2(k2 − c′2 − µ) + [a5 − a1] ∗ ε1(k)

+[a6 + a4 − a2] ∗ ε2(k) (5)

which are obtained from the TBA equations (3) in the
limit T → 0. The negative part of the dressed energies
εa(k), a = 1, 2 for k ≤ Qa corresponds to occupied states,
while the positive part of εa corresponds to unoccupied
states. The integration boundaries Qa characterize the
“Fermi surfaces” defined by εa(Qa) = 0. In a canonical
ensemble the bosonic pairs form a spin singlet ground
state when the external field is less than a lower critical
field. In this phase, the low energy physics can be char-
acterized by a spin-charge separation theory of the U(1)
TLL describing the charge sector and a O(3) non-linear
sigma model describing the spin sector [28]. However,
if the external field exceeds an upper critical field, we
have solely ferromagnetic single bosons with aligned spins
along the external field. For an intermediate magnetic
field, the spin-singlet pairs and spin-aligned bosons form
a two-component TLL with magnetization [29]. However,
in realistic experiments with cold atoms, 1D systems can
be realized by tightly confining the atomic cloud in two
(radial) dimensions and weakly confining it along the ax-
ial direction in a harmonic trap. Therefore, the phase
diagram in the µ−H plane is essential for understanding
quantum criticality of the trapped gas at finite tempera-
tures.
We may determine the phase boundaries by analysing

the band fillings in the dressed energy equations (5). The
V − F phase boundary is established by the condition
ε1(k) ≤ 0 and ε2(k) > 0. Then from equation (5) we
have µc1 = −H . The V − S phase boundary is de-
termined by ε1(k) > 0 and ε2(k) ≤ 0 that results in
µc2 = −ǫb/2, where ǫb = ~

2c2/(16m) is the binding en-
ergy of the bound pair. For convenience we shall use the
dimensionless units in the study of quantum criticality
of the system, i.e., µ̃ ≡ µ/ǫb and h = H/ǫb. Thus the
critical fields for the phase boundaries V − F and V − S
read

µ̃c1 = −h, µ̃c2 = −1

2
. (6)

The (F − M) phase boundary is obtained by the re-
quirement ε1(±Q1) = 0 and ε2(k) ≤ 0, yielding the set
of equations

ε̃1(x) = 8x2 − µ̃c3 − h+
1

π

∫ Q̃1

−Q̃1

ε̃1(x
′)

1 + (x − x′)2
dx′,

Q̃2
1 =

µ̃c3

8
+

h

8
− 1

8π

∫ Q̃1

−Q̃1

ε̃1(x
′)

1 + (Q̃1 − x′)2
dx′, (7)

which give the critical field for the phase transition from
a ferromagnetic phase of spin-aligned bosons into a mixed
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phase of the pairs and unpaired bosons,

µ̃c3 = −1

2
+

2

5π

∫ Q̃1

−Q̃1

ε̃1(x)

1 + 16x2/25
dx,

− 2

π

∫ Q̃1

−Q̃1

ε̃1(x)

1 + 16x2
dx. (8)

where Q̃1 = Q1/c and ε̃1(x) is given by (7).
The S−M phase boundary is determined by the condi-

tions ε1(k) ≤ 0 and ε2(±Q2) = 0, from which we obtain
the set of equations,

ε̃2(x) = 2

(

8x2 − 1

2
− µ̃c4

)

+
1

π

∫ Q̃2

−Q̃2

ε̃2(x
′)

1 + (x− x′)2
dx′

+
2

3π

∫ Q̃2

−Q̃2

ε̃2(x
′)

1 + 4(x− x′)2/9
dx′

− 2

π

∫ Q̃2

−Q̃2

ε̃2(x
′)

1 + 4(x− x′)2
dx′,

Q̃2
2 =

1

16
+

µ̃c4

8
− 1

24π

∫ Q̃2

−Q̃2

ε̃2(x
′)

1 + 4(Q̃2 − x′)2/9
dx′

− 1

16π

∫ Q̃2

−Q̃2

ε̃2(x
′)

1 + (Q̃2 − x′)2
dx′

+
1

8π

∫ Q̃2

−Q̃2

ε̃2(x
′)

1 + 4(Q̃2 − x′)2
dx′ (9)

that provide the critical fields for a phase transition from
the spin-singlet phase of paired bosons into a mixed phase
of pairs and unpaired bosons,

µ̃c4 = −h+
4

5π

∫ Q̃2

−Q̃2

ε̃2(x)

1 + 16x2/25
dx

− 4

π

∫ Q̃2

−Q̃2

ε̃2(x)

1 + 16x2
dx. (10)

Here Q̃2 = Q2/c and ε̃2(x) is given by (9).
In order to investigate quantum criticality of the sys-

tem in the strong coupling regime, we need closed form
expressions for the critical fields. By Taylor expansion of
Eqs. (8) and (10), we obtain the critical field values

µ̃c3 = −1

2
+

8
√
2

15π

(

h− 1

2

)
3
2

+
104

75π2

(

h− 1

2

)2

(11)

µ̃c4 = −h+
32

√
2

15π

(

1

2
− h

)
3
2

+
2912

225π2

(

1

2
− h

)2

(12)

which are in good agreement with the numerical results
obtained from (8) and (10) in the strong coupling regime.
These asymptotic results (Eqs.(11) and (12)) can also
be obtained by converting the critical fields obtained in
the H − n plane [29] into the µ − H plane, where the
effective chemical potentials µ1 = µ+H , µ2 = µ+ ǫb/2

for unpaired and paired bosons are presented explicitly
in [29].

In the next section we will derive analytical expressions
for the equation of state and universal TLL thermody-
namics in the physical regime where t = T/ǫb ≪ 1, i.e.,
for the strong coupling and low temperature regimes.

IV. EQUATION OF STATE AND TLL

THERMODYNAMICS

The thermodynamics and the high precision of the
equation of state of a system are the key informations
that can be used to map out quantum critical phenom-
ena and to make comparisons between theory and experi-
ment. Recently, the equation of state of a two-component
ultra-cold Fermi gas has been measured [42, 43] using
theoretical schemes [44]. Such experimental advances
provide exciting opportunities to test universal TLL and
quantum critical phenomena in low dimensional many-
body systems.

A. Equation of state

The lack of analytic solutions of the TBA equations
limits the ability to make physical predictions of the
model at finite temperatures. In fact, the thermody-
namic properties of the model at finite temperature are
notoriously difficult to extract due to the presence of the
bosonic nature and the spin-spin exchange interaction.
Building on the method presented in [38] and consider-
ing the physical region (strong coupling |c| ≫ 1 and low
temperatures), we find that spin fluctuations are strongly
suppressed by a strong field, i.e., H ≫ T . Therefore we
can analytically extract the spin wave bound state con-
tributions to the unpaired dressed energy, see the third
equation in (3). Moreover, we notice that the convolu-
tion terms converge rapidly once ε1,2(k) > 0 in the TBA
equations. Therefore, we are allowed to carry out a Tay-
lor expansion with respect to c in the kernel functions an
in the TBA equations at low temperatures. Then, inte-
grating by parts, we may obtain the dressed energies in
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terms of polylogarithm functions up to order 1/|c|3,

ε1(k) ≈ ~
2

2m
k2 − µ−H − 2|c|p1

c2 + k2
+

4|c|p2
c2 + 16k2

− 20|c|p2
25c2 + 16k2

− T
5
2

2
√
π|c|3

(

~2

2m

)

3
2

Li 5
2

(

−e
A0

1
T

)

+
1984T

5
2

125
√
2π|c|3

(

~2

2m

)

3
2

Li 5
2

(

−e
A0

2
T

)

(13)

−Te−
H
T
− K̄

4

[(

1− 2k2

c2

)

I0

(

K̄

4

)

+
2k2

c2
I1

(

K̄

4

)]

,

ε2(k) ≈ 2~2

2m
k2 − ~

2

2m

c2

8
− 2µ+

8|c|p1
c2 + 16k2

− 40|c|p1
25c2 + 16k2

+
3968T

5
2

125
√
π|c|3

(

~2

2m

)

3
2

Li 5
2

(

−e
A0

1
T

)

+
2|c|p2

c2 + 4k2
− |c|p2

c2 + k2
− 6|c|p2

9c2 + 4k2

+
181T

5
2

108
√
2π|c|3

(

~2

2m

)

3
2

Li 5
2

(

−e
A0

2
T

)

. (14)

Here Lis(z) =
∑∞

k=1 z
k/ks is the polylogarithm function.

The terms K̄ = 8p1/(T |c|) and In(z) =
∑∞

γ=0
(z/2)n+2γ

γ!(n+γ)!

are obtained from the so-called “string” or spin wave con-
tributions.
Using the above dressed energies and integrating by

parts, we may calculate the pressure (4) in a straightfor-
ward way, with result

p1 ≈ −
T

3
2 f1

3
2

(

4π~2

2m

)

1
2

[

1− p1
|c|3

2m

~2
+

3968p2
125|c|3

2m

~2

]

, (15)

p2 ≈ −
T

3
2 f2

3
2

(

2π~2

2m

)

1
2

[

1 +
3968p1
125|c|3

2m

~2
+

181p2
108|c|3

2m

~2

]

,(16)

where we have denoted f i
s = Lis

(

−e
Ai
T

)

with i = 1, 2

and

A1 = µ+H +
2p1
|c| − 16p2

5|c| + Te−
H
T e−

K̄
4 I0

(

K̄

4

)

+
T

5
2

|c|3
(

~2

2m

)
3
2

[

1

2
√
π
f1

5
2
− 1984

125
√
2π

f2
5
2

]

, (17)

A2 =
~
2

2m

c2

8
+ 2µ− 32p1

5|c| − p2
3|c|

− T
5
2

|c|3
(

~2

2m

)
3
2

[

3968

125
√
π
f1

5
2
+

181

108
√
2π

f2
5
2

]

. (18)

Thus an infinite number of TBA equations have been
simplified to two coupled equations, making the thermo-
dynamics of the model analytically accessible.

0.000 0.001 0.002 0.003 0.004 0.005
0.000

0.006

0.012

0.018

t*2

 Polylog / b=-0.49
 Sommerfeld / b=-0.49
 Polylog / b=-0.45
 Sommerfeld / b=-0.45

s/
|c
|

T/ b

t*1

FIG. 2: (Color online) Entropy vs temperature from TLL
entropy (30) and entropy calculated from the equation of state
(15 - 18) for µ = −0.49 and µ = −0.45. The universal linear
temperature dependent TLL entropy is broken down at the
crossover temperatures t∗ which separate the TLL phase and
the quantum critical regime, see Fig 3.

The above expressions for the pressures (15) and (16)
provide the precise equation of state of the system from
which universal TLL thermodynamics and scaling func-
tions near critical points can be further derived analyti-
cally. We present a high precision equation of state in the
later discussions of the singularities of thermodynamic
properties near the quantum critical point as the tem-
perature tends to zero. To evaluate physical properties
we substitute Eqs. (17) and (18) into Eq.(15) and (16).
This provides two coupled equations for p1 and p2, which
can be solved by iteration. We discuss the quantum crit-
icality of the system using these pressures in the next
Section.

B. Universal TLL thermodynamics

In general, the free energy of a 1D many-body sys-
tem at low temperatures can be naturally attributed to
low-lying excitations near the Fermi points. From calcu-
lations of the finite temperature corrections to the free
energy, one can extract universal TLL thermodynamics.
This low energy physics can also be obtained from confor-
mal field theory [45]. Here we further develop an efficient
way to obtain the universal TLL thermodynamics in the
mixed phase of the pairs and unpaired bosons from the
TBA equations (3). For temperatures T ≪ 1 and the
strong coupling regime |c| ≫ 1, the gapless phase is in
the region H ∼ c2 ≫ T . Therefore, we can ignore the
spin wave bound state contributions in this phase. The
first few terms coming from an asymptotic expansion in
the TBA equations (3) are given in terms of 1/|c| correc-
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FIG. 3: (Color online) Contour plot of entropy S in the t−µ
plane from the equation of state (15) and (16) for two values
of the external magnetic field (a) h = 0.49 and (b) h = 0.51.
The dashed lines are the crossover temperatures determined
in Figure 2. The intersection points between two dashed lines
are the critical points in the µ − H plane, see Figure 1. (a)
The dashed line separates the TLLS and TLLM from the
quantum critical regimes. (b) The dashed line separates the
TLLF and TLLM from the quantum critical regimes. The
left-most-dashed line in (a) and (b) separates the vacuum V
from the TLLS and TLLF , respectively.

tions by

ε1(k) ≈ ~
2

2m
k2 − µ−H − 2p1

|c| +
16p2
5|c| , (19)

ε2(k) ≈ 2~2

2m
k2 − ~

2

2m

c2

8
− 2µ+

32p1
5|c| +

p2
3|c| . (20)

Higher order corrections can be calculated in a straight-
forward manner (see the analysis in (15) and (16)). How-
ever, they are not necessary in the present discussion.
From Eq. (4) we obtain the pressures for spin-aligned

single bosons and spin-singlet pairs

p1 =

(

~
2

2m

)−1/2
1

π

∫ ∞

0

√

ε01dε
0
1

1 + e(ε
0
1−A0

1)/T
, (21)

p2 =

(

~
2

2m

)−1/2 √
2

π

∫ ∞

0

√

ε02dε
0
2

1 + e(ε
0
2−A0

2)/T
, (22)

where

A0
1 ≈ µ+H +

2p1
|c| − 16p2

5|c| , (23)

A0
2 ≈ 2µ+

~
2

2m

c2

8
− 32p1

5|c| − p2
3|c| . (24)

The integrals in (21) and (22) can be calculated explic-
itly via the Sommerfeld expansion. We assume that there
are two “Fermi seas”, i.e., a Fermi sea of bound pairs
with an effective chemical potential A0

2 and a Fermi sea
of unpaired bosons with an effective chemical potential
A0

1. From equations (19-24) and the relations n1 = ∂p
∂H ,

n = n1 + 2n2 = ∂p
∂µ , by a cumbersome iteration we can

obtain closed forms for the pressures

p1 =
2π2n3

1

3

(

1− 6n1

|c| +
96n2

5|c|

)

+
T 2

6n1

(

1 +
2n1

|c| − 32n2

5|c|

)

, (25)

p2 =
π2n3

2

3

(

1 +
48n1

5|c| +
n2

|c|

)

+
T 2

3n2

(

1− 16n1

5|c| − n2

3|c|

)

. (26)

The Helmholtz free energy per unit length is given by f =
nµ − p. After a lengthy iteration, we obtain a universal
leading temperature corrections to the free energy of the
form

f = f0 −
πT 2

6

(

1

v1
+

1

v2

)

. (27)

with f0 the ground state already obtained in [29]. Here

v1 = 2πn1

(

1 +
2(32n2 − 10n1)

5|c|

)

(28)

and

v2 = πn2

(

1 +
2(48n1 + 5n2)

15|c|

)

(29)

are the charge velocities for unpaired and paired bosons.
The entropy per unit length is given by s = − ∂f

∂T where

s =
πT

3

(

1

v1
+

1

v2

)

. (30)

We observe that in this gapless phase, spin wave bound
state fluctuations are suppressed due to a strong exter-
nal field. The suppression of spin fluctuations leads to a
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universality class of a two-component TLL in the mixed
phase of pairs and unpaired bosons, which we denote
by TLLM . At low temperatures, the spin singlet phase
persists as a single component TLL (denoted by TLLS)
below a crossover temperature. The fully polarised sin-
gle atoms can persist in a TLL phase (denoted by TLLF )
below another crossover temperature. However, the TLL
is not appropriate to describe quantum criticality, since
it does not include proper thermal fluctuations for the
quantum critical regime. In general the TLL persists be-
low the crossover temperature at which the relation of the
linear temperature-dependent entropy (or specific heat)
breaks down.

In Figure 2 we present the entropy as a function of the
temperature using these two different approaches – the
polylogarithm function result (15-18) and the Sommer-
feld expansion (30). The crossover temperature t∗ deter-
mines the boundaries between the TLL regime and the
quantum critical regime, see the contour plots of entropy
in the t− µ plane for two different values of the external
field in Figure 3. The crossover boundaries are estab-
lished by the points at which the TLL entropy (30) breaks
down, i.e., the entropy is no longer linear temperature-
dependent. At finite temperatures, the system exhibits
the characteristic V-shaped behaviour of quantum criti-
cality.

V. QUANTUM CRITICALITY

Quantum criticality describes the critical behavior
near a quantum phase transition, i.e., it describes col-
lective behavior of a large number of interacting parti-
cles at temperatures sufficiently low, such that quantum
mechanics plays a crucial role in determining the distin-
guishing characteristics [31]. The quantum phase transi-
tion occurs at absolute zero temperature as the param-
eters of the system are varied. In the critical regime, a
universal and scale-invariant description of the system is
expected through the power-law scaling of thermodynam-
ical properties. From the phase diagram of spin-1 bosons,
see Figure 1, we observe that the quantum phase transi-
tion occurs as the driving parameters µ̃ and h̃ cross the
phase boundaries at zero temperature. Although there is
no true finite temperature quantum phase transition in
a 1D model, quantum criticality of a 1D many-body sys-
tem is associated with a universal crossover T ∗ that sepa-
rates the excitation spectrum from relativistic to nonrel-
ativistic dispersion [46, 47]. In the present spin-1 model
of bosons, we can interpret the spin singlet phase as a
TG gas of hard-core bosons with mass 2m and the spin-
aligned ferromagnetic phase as a TG gas of single atoms
with mass m. The mixed phase of two coupled TG gases
is made of particles with mass m and 2m.

A. Criticality driven by a chemical potential

Quantum critical behaviour is uniquely characterized
by the critical exponents depending only on the dimen-
sionality and the symmetry of the excitation spectrum.
This is reflected by singularities in the thermodynamic
quantities, such as density n, compressibility κ = ∂n/∂µ
and magnetization M . They can be obtained from the
derivatives of the pressure p with respect to µ and H . In
order to identify universal scaling of the thermodynamic
properties in the quantum critical regime, we will only
take into account the first few terms in the equation of
state (15) and (16). To this end, the total pressure is
simplified as

p̃ = − t
3
2

2
√
2π

(

1

2
f1

3
2
+

1√
2
f2

3
2

)

, (31)

where we have defined a dimensionless pressure p̃ =
p/|c|ǫb with the potentials

Ã1 = µ̃+ h+ 2p̃1 −
16p̃2
5

, (32)

Ã2 = 1 + 2µ̃− 32p̃1
5

− p̃2
3
, (33)

and we have denoted the function f i
s = Lis

(

−e
Ai
T

)

.

By iterating equations (31), (32) and (33), we obtain
the dimensionless density ñ ≡ n/|c|, where

ñ = −
√
t

2
√
2π

(

1

2
f1
1/2∆1 +

√
2f2

1/2∆2

)

, (34)

with

∆1 = 1− t1/2

2
√
2π

f1
1/2 +

t

8π

(

f1
1/2

)2

+
8t1/2

5
√
π
f2
1/2

+
2t

15π

(

f2
1/2

)2

+
12t

25π
√
2
f1
1/2f

2
1/2,

∆2 = 1 +
4t1/2

5
√
2π

f1
1/2 −

t

5π

(

f1
1/2

)2

+
t1/2

12
√
π
f2
1/2

+
t

144π

(

f2
1/2

)2

+
101t

75π
√
2
f1
1/2f

2
1/2.

The total density (34) depends on the density of single
atoms and the density of paired atoms. Furthermore,
using the standard thermodynamic relations, we obtain
the magnetization M̃ ≡ M/|c|,

M̃ = −
√
t

2
√
2π

{

1

2
f1
1/2

(

1− t1/2

2
√
2π

f1
1/2 +

t

8π

(

f1
1/2

)2

+
32t

25π
√
2
f1
1/2f

2
1/2

)

+
√
2f2

1/2

(

4t1/2

5
√
2π

f1
1/2

− t

5π

(

f1
1/2

)2

+
t

15π
√
2
f1
1/2f

2
1/2

)

}

(35)
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and the susceptibility χ̃ ≡ χǫb/|c|,

χ̃ = − 1

2
√
2πt

{

1

2
f1
−1/2

(

1− 3t1/2

2
√
2π

f1
1/2 +

3t

4π

(

f1
1/2

)2

+
8t1/2

5
√
π
f2
1/2 +

2t

15π

(

f1
1/2

)2

+
36t

25π
√
2
f1
1/2f

2
1/2

)

+f2
−1/2

32t

25π
√
2

(

f1
1/2

)2
}

. (36)

By a lengthy calculation, the compressibility κ̃ ≡ κǫb/|c|
is given by

κ̃ = − 1

2
√
2πt

{

1

2
f1
−1/2

[

(∆1)
2 − t1/2

2
√
2π

f1
1/2

(

1

− 3t1/2

2
√
2π

f1
1/2 +

16t1/2

25
√
π
f2
1/2

)

+
2t1/2

5
√
π
f2
1/2

(

1

− 3t1/2

2
√
2π

f1
1/2 +

197t1/2

60
√
π

f2
1/2

)

]

+ 2
√
2f2

−1/2

[

(∆2)
2

+
4t1/2

5
√
2π

f1
1/2

(

1 +
11t1/2

10
√
2π

f1
1/2 +

t1/2

4
√
π
f2
1/2

)

+
t1/2

12
√
π
f2
1/2

(

1 +
424t1/2

25
√
2π

f1
1/2 +

t1/2

4
√
π
f2
1/2

)

]}

.(37)

These thermodynamic properties pave a way to ex-
tract universal scaling functions in the vicinity of the
critical points µ̃c. Following the procedure discussed in
[38], quantum criticality of these thermodynamic quanti-
ties can be obtained in the limit T → 0 and T > |µ̃− µ̃c|
across each of the phase boundaries, with the results

(V − F )







ñ ≃ −
√
t

4
√
2π

Li 1
2

(

−e
µ̃−µ̃c1

t

)

,

M̃ ≃ −
√
t

4
√
2π
Li 1

2

(

−e
µ̃−µ̃c1

t

)

,
(38)

(V − S)







ñ ≃ −
√
t

2
√
π
Li 1

2

(

−e
2(µ̃−µ̃c2)

t

)

,

M̃ ≃ 2t
5π

√
2
Li 1

2

(

−e
2(µ̃−µ̃c2)

t

)

∼ 0,
(39)

(F −M)







ñ ≃ ñ03 − λ1

√
tLi 1

2

(

−e
2(µ̃−µ̃c3)

t

)

,

M̃ ≃ M̃03 + λ2

√
tLi 1

2

(

−e
2(µ̃−µ̃c3)

t

)

,
(40)

(S −M)







ñ ≃ ñ04 − λ3

√
tLi 1

2

(

−e
µ̃−µ̃c4

t

)

,

M̃ ≃ −λ4

√
tLi 1

2

(

−e
µ̃−µ̃c4

t

)

.
(41)

Here M̃03 = ñ03, ñ04, λi, with i = 1 . . . 4, a and b are con-
stants, independent of µ̃ and t. They are given explicitly

by

ñ03 =

√
a

2π
√
2

(

1 +

√
a

π
√
2
+

a

2π2

)

,

ñ04 =

√
b

π

(

1−
√
b

6π
+

b

36π2

)

,

λ1 =
1

2
√
π

(

1− 16
√
a

5π
√
2
− 8a

25π2

)

,

λ2 =
4
√
a

5
√
2π3/2

(

1− 3
√
a

5π
√
2

)

,

λ3 =
1

4
√
2π

(

1− 32
√
b

5π
+

848b

75π2

)

,

λ4 =
1

4
√
2π

(

1− 16
√
b

5π
+

8b

15π2

)

, (42)

with

a =

(

h− 1

2

)

(

1 +
13

√
2

15π

√

h− 1

2

)

,

b = 2

(

1

2
− h

)

(

1 +
91

√
2

45π

√

1

2
− h

)

.

In the above equations ñ03 and ñ04 are the background
densities near the critical points µ3 and µ4, respectively.
At quantum criticality, the above densities can be cast
into a universal scaling form (see [31, 32, 36]), e.g.,

n(µ, T ) = n0 + T
d
z
+1− 1

νz G
(

µ− µc

T
1
νz

)

. (43)

Here the dimensionality d = 1 and the scaling function
G(x) = λLi 1

2
(x) with a constant λ. Consequently the

dynamical critical exponent z = 2 and the correlation
length exponent ν = 1/2 can be read off from the univer-
sal scaling form (43). We observe that the spin-1 Bose
gas belongs to the same universality class as spin-1/2 at-
tractive fermions [38] due to the hard-core nature of the
two coupled Tonks-Girardeau gases.
In Figures 4 and 5 we plot the “scaled density”

T−(d
z
+1− 1

νz
)(n(µ, T )−n0) versus µ̃ for different values of

the temperature near the critical points µ̃c1, µ̃c2, µ̃c3 and
µ̃c4. We observe that after an appropriate subtraction of
the background density all curves at different tempera-
tures intersect at the critical points, which is the hall-
mark of criticality. In the regime of low polarization, i.e.
P < Pc, the true phase transitions from the vacuum into
the spin-singlet paired phase and from the pure paired
phase into the mixture of spin-singlet pairs and spin-
aligned bosons occur as the chemical potential passes the
lower critical point µ̃c2 (6) and the upper critical point
µ̃c4 (12), respectively, see Figure 4.
For large polarization, i.e., P > Pc, the phase tran-

sitions from vacuum into the ferromagnetic spin-aligned
boson phase and from the spin-aligned boson phase into
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FIG. 4: (Color online) “Scaled density” vs chemical potential
for h = 0.49 at different temperatures T/ǫb = 0.005, 0.01,
0.015, 0.02 and 0.025. The density curves at different tem-
peratures intersect at the critical points. This feature can be
used to map out the phase boundary V − S at µ̃c2 = −0.5
(Eq. (6)) in upper panel and map out the phase boundary
S −M at µ̃c4 ≈ −0.489 (Eq. (12)) in the lower panel.

the mixture of spin-singlet pairs and spin-aligned bosons
occur as the chemical potential varies across the lower
critical point µ̃c1 (6) and the upper critical point µ̃c3

(11), respectively, see Figure 5. The universal scaling be-
haviour and the zero temperature phase diagram can be
identified from the finite temperature density profiles of
the trapped gas where the local chemical potentials are
replaced by the harmonic trapping potential.

Furthermore, we mention that similar calculations of
the scaling function can be constructed for the compress-
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FIG. 5: (Color online) “Scaled density” vs chemical potential
for h = 0.51 at different temperatures T/ǫb = 0.005, 0.01,
0.015, 0.02 and 0.025. The density curves at different tem-
peratures intersect at the critical points. This feature can be
used to map out the phase boundary (V − F ) at µ̃c1 = −h
(Eq. (6)) in upper panel and map out the phase boundary
(F −M) at µ̃c3 ≈ −0.499 (Eq. (11)) in the lower panel.

ibility across all phase boundaries,

(V − F ) κ̃ ≃ − 1

4
√
2πt

Li− 1
2

(

−e
µ̃−µ̃c1

t

)

,

(V − S) κ̃ ≃ − 1√
πt

Li− 1
2

(

−e
2(µ̃−µ̃c2)

t

)

,

(F −M) κ̃ ≃ κ̃03 −
λ5√
t
Li− 1

2

(

−e
2(µ̃−µ̃c3)

t

)

,

(S −M) κ̃ ≃ κ̃04 −
λ6√
t
Li− 1

2

(

−e
µ̃−µ̃c4

t

)

. (44)

Here κ̃03, κ̃04 are the background compressibility in the
vicinities of the critical points µ̃c3 (Eq. (11)) and µ̃c4 (Eq.
(12)), whereas λ5 and λ6 are temperature-independent
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constants

κ̃03 =
1

4π
√
2a

(

1 +
3
√
a

π
√
2
+

3a

π2

)

, (45)

κ̃04 =
1

π
√
b

(

1−
√
b

2π
+

b

6π2

)

, (46)

λ5 =
1√
π

(

1− 24
√
a

5π
√
2
+

36a

25π2

)

, (47)

λ6 =
1

4
√
2π

(

1− 36
√
b

5π
+

414b

25π2

)

. (48)

Again, the critical exponents z = 2 and ν = 1/2 can be
read off the universal scaling function F(x) = λLi− 1

2
(x)

in the universal form

κ(µ, T ) = κ0 + T
d
z
+1− 2

νzF
(

µ− µc

T
1
νz

)

. (49)

B. Criticality driven by a magnetic field

The quantum phase transitions driven by a magnetic
field are particularly interesting. In the phase diagram
Figure 1, for fixed chemical potential we can vary the
external field H to pass the phase boundaries (S − M)
and (M−F ). At finite temperatures, the three zero tem-
perature quantum phases, i.e., the phase of singlet pairs,
ferromagnetic phase of spin-aligned atoms and the mixed
phase of pairs and single atoms, become the relativistic
TLL of bound pair (TLLS), TLL of single atoms (TLLF )
and a two-component TLL (TLLM) of paired and single
atoms, respectively. We obtain the critical fields by con-
verting the critical fields Eq. (12) and Eq. (11)

hc1 = −µ̃+
32

√
2

15π

(

µ̃+
1

2

)
3
2

− 32

45π2

(

µ̃+
1

2

)2

,(50)

hc2 = −µ̃+
1

2

(

15π

4

)
2
3
(

µ̃+
1

2

)
2
3

− 5

8

(

µ̃+
1

2

)

.(51)

These critical fields and the crossover temperatures
can be observed in the contour plot of the entropy
in the T − H plane, see Figure 6. The low energy
TLL physics breaks down at the crossover temperature
(dashed lines) where the dispersion of either bound pairs
or unpaired single atoms becomes nonrelativistic. In par-
ticular, in the vicinity of the quantum critical points hc1

and hc2, the system exhibits two different quantum crit-
ical regimes. From equations (34),(35) and (37), we find
the scaling function in the critical regime near the critical
point (50)

(S −M)



















ñ ≃ ñ05 − λ7

√
tLi 1

2

(

−e
h−hc1

t

)

,

M̃ ≃ −λ8

√
tLi 1

2

(

−e
h−hc1

t

)

,

κ̃ ≃ κ̃05 − λ9√
t
Li− 1

2

(

−e
h−hc1

t

)

,

(52)
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T/
b

0.000

0.02150

FIG. 6: (Color online) Contour plot of the entropy S vs the
external field H for fixed chemical potential µ̃ = −0.495 in
the T − H plane. The dashed lines are determined by com-
paring the result from the equation of state (15-16) and the
TLL entropy (30). The crossover temperatures separates the
quantum critical regimes from the TLL phases.

where the constants are given by

ñ05 =

√
d

π

(

1−
√
d

6π
+

d

36π2

)

,

κ̃05 =
1

π
√
d

(

1−
√
d

2π
+

d

6π2

)

,

λ7 =
1

4
√
2π

(

1− 32
√
d

5π
+

848d

75π2

)

,

λ8 =
1

4
√
2π

(

1− 16
√
d

5π
+

8d

15π2

)

,

λ9 =
1

4
√
2π

(

1− 36
√
d

5π
+

414d

25π2

)

,

with

d = 2

(

µ̃+
1

2

)

(

1−
√
2

9π

√

µ̃+
1

2

)

,

e =
1

2

(

15π

4

)
2
3
(

µ̃+
1

2

)
2
3

.

In the vicinity of the quantum critical points hc2, we
obtain the scaling forms

(F −M)



















ñ ≃ ñ06 − λ10

√
tLi 1

2

(

−e
α(h−hc2)

t

)

,

M̃ ≃ M̃06 + λ11

√
tLi 1

2

(

−e
α(h−hc2)

t

)

,

κ̃ ≃ κ̃06 − λ12√
t
Li− 1

2

(

−e
α(h−hc2)

t

)

,

(53)
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where

ñ06 =

√
e

2π
√
2

(

1 +

√
e

π
√
2
+

e

2π2

)

,

κ̃06 =
1

4π
√
2e

(

1 +
3
√
e

π
√
2
+

3e

π2

)

.

λ10 =
1

2
√
π

(

1− 16
√
e

5π
√
2
− 8e

25π2

)

,

λ11 =
4
√
e

5
√
2π3/2

(

1− 3
√
e

5π
√
2

)

,

λ12 =
1√
π

(

1− 24
√
e

5π
√
2
+

36e

25π2

)

(54)

with

α = − 8

5π

(

15π

4

)
1
3
(

µ̃+
1

2

)
1
3

. (55)

In this case, the background density M̃06 = ñ06 is equal
to the total density at the critical point. The density (or
magnetization) and compressibility can be recast into the
universal scaling form

M(h, T ) = n0 + T
d
z
+1− 1

νz G
(

α(h− hc)

T
1
νz

)

, (56)

κ(µ, T ) = κ0 + T
d
z
+1− 2

νzF
(

α(h− hc)

T
1
νz

)

, (57)

with the same critical exponents as that for quantum crit-
icality driven by the chemical potential, i.e. the dynam-
ical critical exponent z = 2 and the correlation length
exponent ν = 1/2.
In Figure 7 we show the magnetization as a function

of the external field for different temperatures for a fixed
chemical potential. All curves intersect at the critical
point hc1 without background magnetization. However,
these curves intersect at the upper critical point hc2 with
appropriate subtraction of the background magnetiza-
tion. We can obtain similar scaling behaviour for the
densities near the critical points hc1 and hc2 like that
presented in Figures 4 and 5. It turns out that magne-
tization can be used to map out the bulk phase diagram
through the 1D trapped gas at finite temperatures.

VI. CONCLUSION

Using the TBA equations, we have studied the quan-
tum phase diagram, thermodynamics and quantum crit-
ical behaviour of one-dimensional spin-1 bosons with
strongly repulsive density-density and antiferromagnetic
spin-exchange interactions. We have determined with
high precision the equation of state from which the TLL
thermodynamics, universal scaling functions and critical
exponents have been obtained. The universality class of
quantum criticality has also been discussed.
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FIG. 7: (Color online) Magnetization vs external field for
µ̃ = −0.495. Upper panel: the intersection point of the
magnetization curves at different temperatures gives the crit-
ical external field hc1 at the boundary S −M . Lower panel:
after a proper subtraction of the background magnetization
M̃06 = n(t), the intersection point of the magnetization curves
at different temperatures gives the critical external field hc2

at the boundary F −M .

The scaling forms of the density, compressibility, mag-
netization and susceptibility associated with the phase
transitions driven by the chemical potential and magnetic
field were rescaled to the universality class of quantum
criticality of free fermions with critical exponent z = 2
and correlation length exponent ν = 1/2. It thus turns
out that the quantum criticality of the spin-1 Bose gas
belongs to the same universality class as spin-1/2 at-
tractive fermions [38] due to the hard-core nature of the
two coupled Tonks-Girardeau gases. We have also shown
that the quantum criticality in 1D systems involves a
universal crossover from a TLL with linear dispersion to
free fermions with a quadratic dispersion near the critical
point. These scaling forms for the thermodynamic prop-
erties across the phase boundaries illustrate the physical
origin of quantum criticality in this system, where the
singular part of the thermodynamic properties involves a
sudden change of density of state for either pairs or un-
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paired single atoms. The phase diagram, the TLL ther-
modynamics and critical properties of the bulk system
can be mapped out from the density and magnetization
profiles of the trapped spinor gas at finite temperatures.
Our results open the way to further study such universal
features of 1D many-body physics in experiments with
ultracold atoms.
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